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Introductions 

In differential geometry, the notion of Riemannian submersion was first studiedby O’Neill 

[14] and Gray [6]. Watson defined almost Hermitian submersions between Hermitian manifolds 

and he also showed that the base manifold and each fiber have the same kind of structure as the 

total space in most case [25]. Recently, according to the different conditions on Riemannian 

submersion, many authors have carried out several studies (like [8], [9], [10], [15], [17], [18], 

[19], [21], [22]). Lee and Sahin investigated pointwise slant submersions [11]. As a 

generalization of slant submersions, Sepet and Bozok defined pointwise semi-slant submersions 

from Hermitian manifolds onto Riemannian manifolds [23] and pointwise bi-slant submersions 

in [24]. Also, in [16], Park studied v-semi-slant submersions from Hermitian manifolds onto 

Riemannian manifolds and obtained some characterizations.On the other hand, it is well known 

that Riemannian submersions are related with physics and have their applications in the Yang 

Mills theory [4], Kaluza Klein theory [5], supergravity and superstring theories [7] etc. Some 

other applications of Riemannian submersions are statistica machine learning process, medical 

imaging [13], statistical analysis on manifolds [3] and robotic theory [1]. 

 

In this paper, we study pointwise v-semi-slant submersions from almost Hermitian 

manifolds onto Riemannian manifolds. We investigate the integrability of distributions and the 

geometry of fibers. Also we obtain necessary and sufficient conditions for such maps to be 

totally geodesic and provide an example ofsuch submersion. 

Preliminaries 

Let M be an even-dimensional differentiable manifold. Let J be a (1,1) tensor field on M 

such that 𝐽2 = −𝐼, where I is identity operator. Then J is called an almost complex structure on 

M. The manifold M with an almost complex structure J is called an almost complex manifold 

[26]. It is well known that an almost complex manifold is necessarily orientable. Nijenhuis 

tensor N of an almost complex structure is defined as: 

𝑁(𝑋1, 𝑋2) = [𝐽𝑋1, 𝐽𝑋2] − [𝑋1, 𝑋2] − 𝐽[𝐽𝑋1, 𝑋2] − 𝐽[𝑋1, 𝐽𝑋2], 

for all 𝑋1, 𝑋2(TM). 

If Nijenhuis tensor field N on an almost complex manifold M is zero, then the almost complex 

manifold M is called a complex manifold. 

Let 𝑔𝑀 is a Riemannian metric on M such that 

 𝑔𝑀(J𝑋1, 𝐽𝑋2) =  𝑔𝑀(𝑋1, 𝑋2),                                   (2.1) 

for all X1, X2(𝑇𝑀). 
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Then  𝑔𝑀 is called an almost Hermitian metric on M and manifold M with Hermitian metric  𝑔𝑀 

is called almost Hermitian manifold. The Riemannian connection  of the almost Hermitian 

manifold M can be extended to the whole tensor algebra on M. Tensor fields (∇𝑌1
𝐽)𝑌2 is defined 

as 

(∇𝑌1
𝐽)𝑌2 = ∇𝑌1

𝐽𝑌2 − 𝐽∇𝑌1
𝑌2,                                     (2.2) 

for all Y1, Y2(𝑇𝑀). 

An almost Hermitian manifold (𝑀, 𝑔𝑀, 𝐽) is called a Kähler manifold if 

Then (𝑀, 𝑔𝑀, 𝐽) is said to be an almost Hermitian manifold, and if   

(∇𝑋1
J) 𝑋2 =  0,                              (2.3) 

for all X1, X2(TM), then (𝑀, 𝑔𝑀, 𝐽)is said to be a Kähler manifold, where  is the Levi-Civita 

connection on M. 

Let F: (𝑀, 𝑔𝑀) ⟶  (𝑁, 𝑔𝑁) be a Riemannian submersion ([12], [20]). Define O’Neill’s tensors 

T and A [14] by 

 

𝐴𝐸1
𝐸2 =  ΉΉ𝐸1

Ѵ𝐸2  +  ѴΉ𝐸1
Ή𝐸2,                                       (2.4) 

 

𝑇𝐸1
𝐸2 =  ΉѴ𝐸1

Ѵ𝐸2  +  ѴѴ𝐸1
Ή𝐸2,                                       (2.5) 

 

for any E1, E2(TM).  

It is easy to see that 𝑇𝐸1
and 𝐴𝐸1

are skew-symmetric operators on the tangent bundle of M 

reversing the vertical and the horizontal distributions.  From equations (2.4) and (2.5), we have 

 

𝑋1
𝑋2 =  𝑇𝑋1

𝑋2 +  Ѵ𝑋1
𝑋2,                                                 (2.6) 

 

𝑋1
𝑍1 =  𝑇𝑋1

𝑍1 +  Ή𝑋1
𝑍1,                                                 (2.7) 

 

𝑍1
𝑋1 =  𝐴𝑍1

𝑋1  +  Ѵ𝑍1
𝑋1,                                                 (2.8) 

 

𝑍1
𝑍2 =  𝐴𝑍1

𝑍2  +  Ή𝑍1
𝑍2,                                                 (2.9) 

 

for all X1, X2(ker F∗) and Z1, Z2(ker F∗), where ΉX 1
Z1 = AZ 1

X1, if Z1 is basic. Let 

(𝑀, 𝑔𝑀) and (𝑁, 𝑔𝑁)  be Riemannian manifolds and F: (𝑀, 𝑔𝑀)(𝑁, 𝑔𝑁) be a 𝐶∞-map then the 

second fundamental form of F is given by 

(F∗) (𝑋1, 𝑋2)  =   𝑋1

𝐹 F∗ (𝑋2) – F∗(𝑋1

𝑀 𝑋2)                               (2.10) 

for X1, X2(TM), where 𝐹 is the pullback connection, and  is the Riemannian connections 

of the metric 𝑔𝑀. 

 

In addition, a differentiable map F between two Riemannian manifolds is totally geodesic 

[2] if 

 
(F∗)(𝑋1, 𝑋2) = 0 ,                                           (2.11) 
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for X1, X2(TM). 

 

Lemma 1. [2] Let ((𝑀, 𝑔𝑀) and (𝑁, 𝑔𝑁)  are Riemannian manifolds. If F: (𝑀, 𝑔𝑀) ⟶

 (𝑁, 𝑔𝑁) be a Riemannian submersion, then for any horizontal vector fields 𝑌1, 𝑌2 and vertical 

vector fields 𝑊1, 𝑊2, we have 

(i) (F∗)(𝑌1, 𝑌2) = 0, 

(ii) (F∗)(𝑊1, 𝑊2) = −F∗(𝑇𝑊1
𝑊2) = −F∗(𝑊1

𝑊2), 

(iii) (F∗)(𝑌1, 𝑊1) = −F∗(𝐴𝑌1
𝑊1) = −F∗(𝑌1

𝑊1). 

Pointwise V-semi-slant submersions 

In this section, pointwise v-semi-slant submersions from an almost Hermitian 

manifold (𝑀, 𝑔𝑀, 𝐽) onto a Riemannian manifold (𝑁, 𝑔𝑁) is defined and studied. 

We now present the notion of pointwise v-semi-slant submersions as follows: 

Definition 1.A Riemannian submersion F: (𝑀, 𝑔𝑀, 𝐽) ⟶(𝑁, 𝑔𝑁) is called apointwise v-semi-

slant submersion if there is a distribution (kerF∗) such that 

(ker F∗) = 𝐷1⨁𝐷2, 𝐽(𝐷1) = 𝐷1, 

and for pM and Z(𝐷2)𝑃, the angle θ=θ(Z) between JZ and the space (𝐷2)𝑃  is independent of 

the choice of the nonzero vector Z, where 𝐷2 is the orthogonal complement of 𝐷1 in 

(ker F∗). The angle θ is called pointwise v-semi-slant function of the slant submersion. 

Let F be a pointwise v-semi-slant submersion from an almost Hermitian 

manifold (𝑀, 𝑔𝑀, 𝐽) onto a Riemannian manifold (𝑁, 𝑔𝑁). Then, we have 

𝑇𝑀 = (ker F∗)⨁(ker F∗).                                     (3.1) 

Further, we put 

𝑍1 = 𝑃𝑍1 + 𝑄𝑍1                                                    (3.2) 

for any vector field 𝑍1(kerF∗), where P and Q are projection morphisms of  (kerF∗) 

onto 𝐷1and 𝐷2, respectively. 

For U (kerF∗), we get 

𝐽𝑈 = 𝐵𝑈 + 𝐶𝑈                                                         (3.3) 

where BU(kerF∗) and CU(kerF∗). Also, for any W(kerF∗), we have 

𝐽𝑊 = 𝜙𝑊 + 𝜔𝑊                                                       (3.4) 
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Where 𝜙𝑊(kerF∗) and 𝜔𝑊(kerF∗). 

Lemma 2. Let F be a pointwise v-semi-slant submersion from an almost Hermitian 

manifold (𝑀, 𝑔𝑀, 𝐽) onto a Riemannian manifold (𝑁, 𝑔𝑁). Then, we have 

ϕ2Z1 + BωZ1 = −Z1, ωϕZ1 + CωZ1 = 0, 

ωBZ2 + C2Z2 = −Z2, ϕBZ2 + BCZ2 = 0 

for any 𝑍1(kerF∗) and  𝑍2(kerF∗). 

Proof. With the help of equations (3.3), (3.4) along with the condition 𝐽2 = −𝐼 we obtain the 

Lemma 2.  

Lemma 3. Let (𝑀, 𝑔𝑀, 𝐽) be an almost Hermitian manifold and (𝑁, 𝑔𝑁) Riemannian manifold. 

F: (𝑀, 𝑔𝑀, 𝐽) ⟶(𝑁, 𝑔𝑁) is a pointwise v-semi-slant submersion ifand only if 

𝐶2𝑉 = −(𝑐𝑜𝑠2𝜃)𝑉, 

for V(𝐷2).  

Proof.The proof of Lemma 3 is the same as that one for v-semi-slant submersion see proposition 

(3.5) and remark (3.6) of [16]. So we omit it.  

Lemma 4. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) onto 

a Riemannian manifold (𝑁, 𝑔𝑁). Then, we have 

Ѵ𝑈1
ϕ𝑉2 + 𝑇𝑈1

ω𝑉2 =  𝜙Ѵ𝑈1
𝑉2 + 𝐵𝑇𝑈1

𝑉2,                       (3.5) 

𝑇𝑈1
ϕ𝑉2 + Ή𝑈1

𝜔𝑉2 =  𝜔Ѵ𝑈1
𝑉2 + 𝐶𝑇𝑈1

𝑉2,                          (3.6) 

Ѵ𝑋1
𝐵𝑌2 + 𝐴𝑋1

𝐶𝑌2 = 𝜙𝐴𝑋1
𝑌2 + 𝐵Ή∇𝑋1

𝑌2,                          (3.7) 

𝐴𝑋1
𝐵𝑌2 + Ή𝑋1

𝐶𝑌2 = 𝜔𝐴𝑋1
𝑌2 + 𝐶Ή∇𝑋1

𝑌2,                           (3.8) 

Ѵ𝑈1
𝐵𝑋1 + 𝑇𝑈1

𝐶𝑋1 = 𝜙𝑇𝑈1
𝑋1 + 𝐵Ή∇𝑈1

𝑋1,                           (3.9) 

𝑇𝑈1
𝐵𝑋1 + Ή∇𝑈1

𝐶𝑋1 = 𝜔𝑇𝑈1
𝑋1 + 𝐶Ή∇𝑈1

𝑋1,                         (3.10) 

Ѵ𝑋1
𝜙𝑈1 + 𝐴𝑋1

𝜔𝑈1 = 𝐵𝐴𝑋1
𝑈1 + 𝜙Ѵ∇𝑋1

𝑈1,                        (3.11) 

𝐴𝑋1
𝜙𝑈1 + Ή∇𝑋1

𝜔𝑈1 = 𝐶𝐴𝑋1
𝑈1 + 𝜔Ѵ∇𝑋1

𝑈1,                         (3.12) 

for any 𝑈1, 𝑉2(kerF∗) and 𝑋1, 𝑌2(kerF∗)). 

Proof. By equations (2.6)-(2.9),(3.3) and (3.4), we get equations (3.5)-(3.12). 

Now, we define 
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(∇𝑈1
𝜙)𝑈2 = Ѵ∇𝑈1

𝜙𝑈2 − 𝜙Ѵ∇𝑈1
𝑈2,                            (3.13) 

(∇𝑈1
𝜔)𝑈2 = Ή∇𝑈1

𝜔𝑈2 − 𝜔Ѵ∇𝑈1
𝑈2,                           (3.14) 

(∇𝑉1
𝐶)𝑉2 = Ή∇𝑉1

𝐶𝑉2 − 𝐶Ή∇𝑉1
𝑉2,                              (3.15) 

(∇𝑉1
𝐵)𝑉2 = Ѵ∇𝑉1

𝐵𝑉2 − 𝐵Ή∇𝑉1
𝑉2                              (3.16) 

for any 𝑈1, 𝑈2(kerF∗) and 𝑉1, 𝑉2(kerF∗)). 

Lemma 5. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) onto 

a Riemannian manifold (𝑁, 𝑔𝑁). Then, we have 

(∇𝑈1
𝜙)𝑈2 = 𝐵𝑇𝑈1

𝑈2 − 𝑇𝑈1
𝜔𝑈2, 

(∇𝑈1
𝜔)𝑈2 = 𝐶𝑇𝑈1

𝑈2 − 𝑇𝑈1
ϕ𝑈2, 

(∇𝑉1
𝐶)𝑉2 = 𝝎𝐴𝑉1

𝑉2 − 𝐴𝑉1
𝐵𝑉2, 

(∇𝑉1
𝐵)𝑉2 =  𝝓𝐴𝑉1

𝑉2 − 𝐴𝑉1
𝐶𝑉2 

for any 𝑈1, 𝑈2(kerF∗) and 𝑉1, 𝑉2(kerF∗). 

Proof. On the account of equations (3.5)-(3.8) and (3.13)-(3.16), we obtain required result of 

Lemma 5. 

Consequently, if 𝝓 and 𝝎 are parallel tensor w.r.t. Levi-Civita connection ∇ defined on M, we 

get 

𝐵𝑇𝑈1
𝑈2 = 𝑇𝑈1

𝜔𝑈2, 𝐶𝑇𝑈1
𝑈2 = 𝑇𝑈1

ϕ𝑈2, 

for any 𝑈1, 𝑈2(TM). 

Theorem 1. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) 

onto a Riemannian manifold (𝑁, 𝑔𝑁). Then, 𝐷1is integrable if and only if 

𝜔(𝐴𝑋1
𝐽𝑋2 − 𝐴𝑋2

𝐽𝑋1) = 𝐶(Ή∇𝑋2
𝐽𝑋1 −  Ή∇𝑋1

𝐽𝑋2), 

for 𝑋1, 𝑋2(𝐷1). 

Proof. For 𝑋1, 𝑋2(𝐷1) and 𝑍1(𝐷2), using equations (2.1), (2.3), (2.9), (3:3) and (3.4), we 

have 

             𝑔𝑀([𝑋1, 𝑋2], 𝑍1) =  𝑔𝑀(∇𝑋1
𝐽𝑋2, 𝐽𝑍1) −  𝑔𝑀(∇𝑋2

𝐽𝑋1, 𝐽𝑍1), 

 𝑔𝑀([𝑋1, 𝑋2], 𝑍1)  =  𝑔𝑀(𝜔(𝐴𝑋1
𝐽𝑋2 − 𝐴𝑋2

𝐽𝑋1), 𝑍1) − 
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                                             𝑔𝑀(𝐶(Ή∇𝑋2
𝐽𝑋1 −  Ή∇𝑋1

𝐽𝑋2), 𝑍1), 

which completes the proof. 

Theorem 2. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) 

onto a Riemannian manifold (𝑁, 𝑔𝑁). Then, 𝐷2 is integrable if and only if 

𝑔𝑀(𝐴𝑍1
𝐵𝑍2 − 𝐴𝑍2

𝐵𝑍1, 𝐽𝑉1) = 𝑔𝑀(𝐴𝑍1
𝐵𝐶𝑍2 − 𝐴𝑍2

𝐵𝐶𝑍1, 𝑉1), 

for 𝑍1, 𝑍2(𝐷2) and 𝑉1(𝐷1). 

Proof. For 𝑍1, 𝑍2(𝐷2) and 𝑉1(𝐷1), we have 

                      𝑔𝑀([𝑍1, 𝑍2], 𝑉1) =  𝑔𝑀(∇𝑍1
𝐽𝑍2, 𝐽𝑉1) −  𝑔𝑀(∇𝑍2

𝐽𝑋1, 𝐽𝑉1), 

𝑔𝑀([𝑍1, 𝑍2], 𝑉1) = 𝑐𝑜𝑠2𝜃𝑔𝑀([𝑍1, 𝑍2], 𝑉1) + 

                                              𝑔𝑀(𝐴𝑍1
𝐵𝑍2 − 𝐴𝑍2

𝐵𝑍1, 𝐽𝑉1) − 

                                              𝑔𝑀(𝐴𝑍1
𝐵𝐶𝑍2 − 𝐴𝑍2

𝐵𝐶𝑍1, 𝑉1). 

 

Now, we have 

𝑠𝑖𝑛2𝜃𝑔𝑀([𝑍1, 𝑍2], 𝑉1) = 𝑔𝑀(𝐴𝑍1
𝐵𝑍2 − 𝐴𝑍2

𝐵𝑍1, 𝐽𝑉1) − 

                                              𝑔𝑀(𝐴𝑍1
𝐵𝐶𝑍2 − 𝐴𝑍2

𝐵𝐶𝑍1, 𝑉1), 

from above the proof is completed. 

Theorem 3. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) 

onto a Riemannian manifold (𝑁, 𝑔𝑁). The distribution (kerF∗) becomesa totally geodesic 

foliation on M if and only if 

𝑠𝑖𝑛2𝜃𝑔𝑀([𝑋1, 𝑈1], 𝑋2) − 𝑐𝑜𝑠2𝜃𝑔𝑀(Ή∇𝑈1
𝑃𝑋1, 𝑋2)  

= −𝑔𝑀(Ή∇𝑈1
𝐽𝑃𝑋1, 𝑋2) − 𝑔𝑀(Ή∇𝑈1

𝐽𝑃𝑋1, 𝑋2) − 𝑔𝑀(Ѵ∇𝑈1
𝐵𝑄𝑋1, 𝐵𝑋2) 

            −𝑔𝑀(𝑇𝑈1
𝐵𝑄𝑋1,  𝐶𝑋2) + 𝑔𝑀(𝑇𝑈1

𝐵𝐶𝑄𝑋1,  𝑋2) + 𝑠𝑖𝑛2𝜃𝑈1[𝜃]𝑔𝑀(𝑄𝑋1,  𝑄𝑋2), 

for 𝑈1(kerF∗) and 𝑋1, 𝑋2(kerF∗). 

Proof. For 𝑈1(kerF∗) and 𝑋1, 𝑋2(kerF∗), using equations (2.1), (2.3), 

(2.6), (2.7), (3.2), (3.3), (3.4) and Lemma 3, we have 
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𝑔𝑀(∇𝑋1
𝑋2, 𝑈1) = −𝑔𝑀([𝑋1, 𝑈1],  𝑋2) − 𝑔𝑀(∇𝑈1

𝑋1,  𝑋2),                                      

  = −𝑔𝑀([𝑋1, 𝑈1],  𝑋2) − 𝑔𝑀(∇𝑈1
𝐽𝑃𝑋1,  𝐽𝑋2) 

     −𝑔𝑀(∇𝑈1
𝐵𝑄𝑋1, 𝐽 𝑋2) + 𝑔𝑀(∇𝑈1

𝐵𝐶𝑄𝑋1,  𝑋2) 

                   −𝑐𝑜𝑠2𝜃𝑔𝑀𝑔𝑀(∇𝑈1
𝑄𝑋1,  𝑋2) +  𝑠𝑖𝑛2𝜃𝑈1[𝜃]𝑔𝑀(𝑄𝑋1,  𝑄𝑋2). 

Now, we obtain 

𝑠𝑖𝑛2𝜃𝑔𝑀(∇𝑋1
𝑋2, 𝑈1) 

= −𝑠𝑖𝑛2𝜃𝑔𝑀([𝑋1, 𝑈1], 𝑋2) + 𝑐𝑜𝑠2𝜃𝑔𝑀(Ή∇𝑈1
𝑃𝑋1, 𝑋2) 

                            −𝑔𝑀(Ή∇𝑈1
𝐽𝑃𝑋1, 𝑋2) − 𝑔𝑀(𝑇𝑈1

𝐽𝑃𝑋1, 𝑋2) − 𝑔𝑀(Ѵ∇𝑈1
𝐵𝑄𝑋1, 𝐵𝑋2) 

                              −𝑔𝑀 (𝑇𝑈1
𝐵𝑄𝑋1,  𝐶𝑋2) + 𝑔𝑀(𝑇𝑈1

𝐵𝐶𝑄𝑋1,  𝑋2)  

                           +𝑠𝑖𝑛2𝜃𝑈1[𝜃]𝑔𝑀(𝑄𝑋1,  𝑄𝑋2).  

Theorem 4.Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) 

onto a Riemannian manifold (𝑁, 𝑔𝑁). The distribution (kerF∗) becomesa totally geodesic 

foliation on M if and only if 

𝑔𝑀(Ѵ∇𝑋1
𝑋2, 𝐵𝐶𝑍1) = 𝑔𝑀(Ѵ∇𝑋1

𝜙𝑋2, 𝐵𝑍1) + 𝑔𝑀(𝑇𝑋1
𝜔𝑋2, 𝐵𝑍1), 

for 𝑋1, 𝑋2(kerF∗) and 𝑍1(kerF∗). 

Proof. For 𝑋1, 𝑋2(kerF∗) and 𝑍1(kerF∗), using equations (2.1), (2.3), 

(2.6), (2.7), (3.3) and Lemma 3, we have 

𝑔𝑀(∇𝑋1
𝑋2, 𝑍1) = 𝑔𝑀(∇𝑋1

𝐽𝑋2, 𝐽𝑍1),                                     

      𝑔𝑀(∇𝑋1
𝑋2, 𝑍1) = 𝑔𝑀(Ѵ∇𝑋1

𝜙𝑋2, 𝐵𝑍1) + 𝑔𝑀(𝑇𝑋1
𝜔𝑋2, 𝐵𝑍1) 

                                              +𝑐𝑜𝑠2𝜃𝑔𝑀(∇𝑋1
𝑋2, 𝑍1) − 𝑔𝑀(Ѵ∇𝑋1

𝑋2, 𝐵𝐶𝑍1). 

Now, we get 

𝑠𝑖𝑛2𝜃𝑔𝑀(∇𝑋1
𝑋2, 𝑍1) = 𝑔𝑀(Ѵ∇𝑋1

𝜙𝑋2, 𝐵𝑍1) + 𝑔𝑀(𝑇𝑋1
𝜔𝑋2, 𝐵𝑍1) 

            −𝑔𝑀(Ѵ∇𝑋1
𝑋2, 𝐵𝐶𝑍1). 

Theorem 5. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) 

onto a Riemannian manifold (𝑁, 𝑔𝑁). The distribution 𝐷1becomesa totally geodesic foliation on 

M if and only if 
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𝑔𝑀(𝐴𝑉1
𝐽𝑉2, 𝐵𝑍1) = 𝑔𝑀(𝐴𝑉1

𝑉2, 𝐵𝐶𝑍1), 

𝑔𝑀(𝐴𝑉1
𝐽𝑉2, 𝜙𝑋1) = −𝑔𝑀(Ή∇𝑉1

𝐽𝑉2, 𝜔𝑋1), 

for𝑉1, 𝑉2(𝐷1), 𝑍1(𝐷2) and 𝑋1(kerF∗). 

Proof. For 𝑉1, 𝑉2(𝐷1), 𝑍1(𝐷2) and 𝑋1(kerF∗), using equations (2.1), (2.3), (2.9), (3.3) 

and Lemma 3, we have 

𝑔𝑀(∇𝑉1
𝑉2, 𝑍1) = 𝑔𝑀(∇𝑉1

𝐽𝑉2, 𝐵𝑍1) − 𝑔𝑀(∇𝑉1
𝑉2, 𝐶2𝑍1) − 𝑔𝑀(∇𝑉1

𝑉2, 𝐵𝐶𝑍1),            

                            = 𝑔𝑀(𝐴𝑉1
𝐽𝑉2, 𝐵𝑍1) + 𝑐𝑜𝑠2𝜃𝑔𝑀(∇𝑉1

𝑉2, 𝐶2𝑍1) − 𝑔𝑀(𝐴𝑉1
𝑉2, 𝐵𝐶𝑍1). 

 

Now, we get 

𝑠𝑖𝑛2𝜃𝑔𝑀(∇𝑉1
𝑉2, 𝑍1) = 𝑔𝑀(𝐴𝑉1

𝐽𝑉2, 𝐵𝑍1) − 𝑔𝑀(𝐴𝑉1
𝑉2, 𝐵𝐶𝑍1). 

Now, again using equations (2.1), (2.3), (2.9) and (3.4), we have 

𝑔𝑀(∇𝑉1
𝑉2, 𝑋1) = 𝑔𝑀(∇𝑉1

𝐽𝑉2, 𝐽𝑋1),                                                                

= 𝑔𝑀(∇𝑉1
𝐽𝑉2, 𝜙𝑋1) + 𝑔𝑀(∇𝑉1

𝐽𝑉2, 𝜔𝑋1) 

    = 𝑔𝑀(𝐴𝑉1
𝐽𝑉2, 𝜙𝑋1) + 𝑔𝑀(Ή∇𝑉1

𝐽𝑉2, 𝜔𝑋1). 

this completes the proof. 

Theorem 6. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) 

onto a Riemannian manifold (𝑁, 𝑔𝑁). The distribution 𝐷2 becomesa totally geodesic foliation on 

M if and only if 

𝑔𝑀(𝐴𝑊1
𝐵𝑊2, 𝐽𝑋1) = 𝑔𝑀(𝐴𝑊1

𝐵𝐶𝑊2, 𝑋1), 

𝑠𝑖𝑛2𝜃𝑔𝑀([𝑊1, 𝑋2], 𝑊2) = −𝑔𝑀(𝑇𝑋2
𝐵𝑊1, 𝐶𝑊2) − 𝑔𝑀(Ѵ∇𝑋2

𝐵𝑊1, 𝐵𝑊2) + 

                                         𝑠𝑖𝑛2𝜃𝑋2[𝜃]𝑔𝑀(𝑊1, 𝑊2) + 𝑔𝑀(𝑇𝑋2
𝐵𝐶𝑊1, 𝑊2), 

for 𝑊1, 𝑊2(𝐷2), 𝑋1(𝐷1) and 𝑋2(kerF∗). 

Proof. For 𝑊1, 𝑊2(𝐷2), 𝑋1(𝐷1) and 𝑋2(kerF∗), using equations (2.1), (2.3), (2.8), (3.3) 

and Lemma 3, we have 

𝑔𝑀(∇𝑊1
𝑊2, 𝑋1) = 𝑔𝑀(∇𝑊1

𝐽𝑊2, 𝐽𝑋1),                                   

                                      = 𝑔𝑀(∇𝑊1
𝐵𝑊2, 𝐽𝑋1) + 𝑐𝑜𝑠2𝜃𝑔𝑀(∇𝑊1

𝑊2, 𝑋1) 
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−𝑔𝑀(∇𝑊1
𝐵𝐶𝑊2, 𝑋1). 

Now, we have 

𝑠𝑖𝑛2𝜃𝑔𝑀(∇𝑊1
𝑊2, 𝑋1) = 𝑔𝑀(𝐴𝑊1

𝐵𝑊2, 𝐽𝑋1) − 𝑔𝑀(𝐴𝑊1
𝐵𝐶𝑊2, 𝑋1). 

Next, from equations (2.1), (2.3), (2.6), (3.3) and Lemma 3, we have 

𝑔𝑀(∇𝑊1
𝑊2, 𝑋2) = −𝑔𝑀([𝑊1, 𝑋2], 𝑊2)−𝑔𝑀(∇𝑋2

𝑊1, 𝑊2) 

                = −𝑔𝑀([𝑊1, 𝑋2], 𝑊2)−𝑔𝑀(∇𝑋2
𝐵𝑊1, 𝐽𝑊2) 

−𝑐𝑜𝑠2𝜃𝑔𝑀(∇𝑋2
𝑊1, 𝑊2) + 𝑠𝑖𝑛2𝜃𝑋2[𝜃]𝑔𝑀(𝑊1, 𝑊2) 

     +𝑔𝑀(∇𝑋2
𝐵𝐶𝑊1, 𝑊2).                     

Now, we have 

𝑠𝑖𝑛2𝜃𝑔𝑀(∇𝑊1
𝑊2, 𝑋2) = −𝑠𝑖𝑛2𝜃𝑔𝑀([𝑊1, 𝑋2], 𝑊2) − 𝑔𝑀(𝑇𝑋2

𝐵𝑊1, 𝐶𝑊2) 

                                                   −𝑔𝑀(Ѵ∇𝑋2
𝐵𝑊1, 𝐵𝑊2) +  𝑠𝑖𝑛2𝜃𝑋2[𝜃]𝑔𝑀(𝑊1, 𝑊2) 

+𝑔𝑀(𝑇𝑋2
𝐵𝐶𝑊1, 𝑊2).       

Theorem 7. Let F be a pointwise v-semi-slant submersion from a Kähler manifold (𝑀, 𝑔𝑀, 𝐽) 

onto a Riemannian manifold (𝑁, 𝑔𝑁). Then, F is a totally geodesic mapif and only if 

𝐶𝑇𝑌1
𝜙𝑌₂ + 𝜔Ѵ∇𝑌1

𝜙𝑌₂ + 𝐶Ή∇𝑌1
𝜔𝑌₂ + 𝜔𝑇𝑌1

𝜔𝑌₂ = 0, 

𝐶Ή∇𝑌1
𝐽𝑊1 + 𝜔𝑇𝑌1

𝐽𝑊1 = 0, 

𝐶𝑇𝑌1
𝐵𝑉1 + 𝜔Ѵ∇𝑌1

𝐵𝑉1 + 𝑇𝑌1
𝐵𝐶𝑉1 − 𝑐𝑜𝑠2𝜃Ή∇𝑌1

𝑉1 +  𝑠𝑖𝑛2𝜃𝑌1[𝜃]𝑉1 = 0, 

for 𝑊1(𝐷1), 𝑉1(𝐷2) and 𝑌1, 𝑌2(kerF∗). 

Proof. Since F is a Riemannian map, we have 

(F∗)(𝑍1, 𝑍2) = 0, 

for𝑍1, 𝑍2(kerF∗)).  

For 𝑌1, 𝑌2(kerF∗), using equations (2.3), (2.6), (2.7), (2.10), (3.3)and (3.4), we have 

(F∗)(𝑌1, 𝑌2) = −F∗(∇𝑌1
𝑌2),                                                                                                

= −F∗(J𝑇𝑌1
𝜙𝑌2 + 𝐽Ѵ∇𝑌1

𝜙𝑌₂ + 𝐽Ή∇𝑌1
𝜔𝑌₂ + 𝐽𝑇𝑌1

𝜔𝑌₂), 

= −F∗(B𝑇𝑌1
𝜙𝑌2 + 𝐶𝑇𝑌1

𝜙𝑌2 + 𝜙Ѵ∇𝑌1
𝜙𝑌2 + ωѴ∇𝑌1

𝜙𝑌₂ 
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+𝐵Ή∇𝑌1
𝜔𝑌2 + 𝐶Ή∇𝑌1

𝜔𝑌2 + 𝜙𝑇𝑌1
𝜔𝑌2 + 𝑇𝑌1

𝜔𝑌2). 

For 𝑌1(kerF∗) and 𝑊1(𝐷1), using equations (2.3), (2.7), (2.10), (3.3) and (3.4), we have 

(F∗)(𝑌1,  𝑊1) = −F∗(∇𝑌1
 𝑊1),                                                                           

                             = F∗(BΉ∇𝑌1
𝐽𝑊1 + 𝐶Ή∇𝑌1

𝐽𝑊1 + 𝜙𝑇𝑌1
𝐽𝑊1 + 𝜔𝑇𝑌1

𝐽𝑊1). 

For 𝑌1(kerF∗) and 𝑉1(𝐷2), using equations (2.3), (2.6), (2.7), (2.10), (3.3) and Lemma 3, 

we have 

(F∗)(𝑌1,  𝑉1) = −F∗(∇𝑌1
 𝑉1), 

                           = F∗(B𝑇𝑌1
𝐵𝑉1 + 𝐶𝑇𝑌1

𝐵𝑉1 + 𝜙Ѵ∇𝑌1
𝐵𝑉1 + 𝜔Ѵ∇𝑌1

𝐵𝑉1 

                +𝑇𝑌1
𝐵𝐶𝑉1 + Ѵ∇𝑌1

𝐵𝐶𝑉1 − 𝑐𝑜𝑠2𝜃Ή∇𝑌1
𝑉1 

−𝑐𝑜𝑠2𝜃𝑇𝑌1
𝑉1 +  𝑠𝑖𝑛2𝜃𝑌1[𝜃]𝑉1). 

 

Example 

Let 𝑅2𝑠 be Euclidean space. Let (𝑌1, 𝑌2, … … … . . 𝑌2𝑠−1, 𝑌2𝑠) be the coordinates of 𝑅2𝑠. Define an 

almost complex structure J on 𝑅2𝑠 as follows: 

𝐽(𝑎1

𝜕

𝜕𝑌1
+ 𝑎2

𝜕

𝜕𝑌2
+. . … … . . … + 𝑎2𝑠−1

𝜕

𝜕𝑌2𝑠−1
+ 𝑎2𝑠

𝜕

𝜕𝑌2𝑠
) 

= −𝑎2

𝜕

𝜕𝑌1
+ 𝑎1

𝜕

𝜕𝑌2
− ⋯ … . … − 𝑎2𝑠

𝜕

𝜕𝑌2𝑠−1
+ 𝑎2𝑠−1

𝜕

𝜕𝑌2𝑠
 

where 𝑎1, 𝑎2, … … . . 𝑎2𝑠−1, 𝑎2𝑠are 𝐶∞-functions on 𝑅2𝑠. 

Example 1. Define a map F: 𝑅6 ⟶ 𝑅2 

𝐹(𝑦1, 𝑦2, … . . , 𝑦6) = (𝑦1𝑠𝑖𝑛 ∝ +𝑦3𝑐𝑜𝑠 ∝, 𝑦4) 

which is a pointwise v-semi-slant submersion such that 

(kerF∗) =< 𝑐𝑜𝑠 ∝
𝜕

𝜕𝑌1
− 𝑠𝑖𝑛 ∝

𝜕

𝜕𝑌3
,

𝜕

𝜕𝑌2
,

𝜕

𝜕𝑌5
,

𝜕

𝜕𝑌6
>, 

(kerF∗)) =< 𝑠𝑖𝑛 ∝
𝜕

𝜕𝑌1
+ 𝑐𝑜𝑠 ∝

𝜕

𝜕𝑌3
,

𝜕

𝜕𝑌4
>, 

(kerF∗)) = 𝐷1⨁𝐷2, 
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where 

𝐷1 =<
𝜕

𝜕𝑌5
,

𝜕

𝜕𝑌6
>, 𝐷2 =<  𝑐𝑜𝑠 ∝

𝜕

𝜕𝑌1
− 𝑠𝑖𝑛 ∝

𝜕

𝜕𝑌3
,

𝜕

𝜕𝑌2
>. 

Thus is a pointwise v-semi-slant submersion with slant functions θ=∝. 
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